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Mathematical models for the growth of nutrient-rich tissue are presented and a number of

properties of the resulting models outlined. The focus is on obtaining broadly applicable results

for the simplest appropriate formulations by using matched-asymptotic, moving-boundary and

thin-film approaches; the relevance of the results to a variety of specific biological applications

will be addressed elsewhere, as will the inclusion of additional physical phenomena.

1 Introduction

The class of models with which we are concerned here is one of the simplest able to predict

certain key stages in the growth of tumours (which provided the original motivation for the

modelling) and of other types of tissue, namely the growth phases in which all cells have

an adequate supply of nutrient due either to the tissue being small in volume or to it being

well perfused by the blood supply; for further background and related considerations we

refer to the recent studies [3, 12, 13] and references therein. Our purpose is three-fold.

Firstly, we aim to establish a mathematical framework for studying a variety of aspects

of tissue growth, moving-boundary and thin-film formulations playing a central role;

applications of these general results in analysing a range of specific biological issues will

be presented elsewhere. Secondly, we seek to summarise some of the novel features of

the resulting models in the context of related classes of moving-boundary problem; these

novelties result largely from the presence of cellular division, which leads to source terms

that are absent in typical applications from the physical sciences. Finally, we investigate

in some detail the role played by cellular diffusion in these growth models.

The conservation laws for the two species with which we are concerned take the form

∂n

∂t
+ ∇ · (nv) = ∇ · (Dn∇n) + kn,

∂ρ

∂t
+ ∇ · (ρv) = ∇ · (Dρ∇ρ) + κρ, (1.1)

n+ ρ = 1,

where n is the volume fraction of one cell type (malignant, in the tumour context) and

ρ that of the second (normal cells, with the mitotic rates typically satisfying 0 � κ < k,

or another surrounding material, such as a fluid or gel (so that κ = 0) in the case of in
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vitro growth; we shall assume throughout that 0 � κ � k, with k � κ being appropriate

for malignant tumour growth); in the case of growth within a porous scaffold, n and ρ

represent volume fractions of the available void space. Both phases are thus assumed to

be incompressible and to form a single continuum, whose macroscopic velocity field v can

be deduced from (1.1) to satisfy

∇ · v = ∇ · (Dn∇n+ Dρ∇ρ) + kn+ κρ. (1.2)

The (cellular) diffusivities Dn and Dρ can be taken to be composition (i.e. n) dependent;

they can be expected often to be negligible in practice, but are in any case useful

numerically since they ensure smooth solutions. To complete a multi-dimensional model,

a constitutive assumption is needed, but we first describe the one-dimensional case in

which (1.1) provides a closed model. For transparency we work with dimensional versions

of the problem for most of the paper; in § 5, however, a non-dimensionalisation is needed

in order to extract the relevant distinguished limits.

2 The one-dimensional problem

2.1 Formulation

To illustrate the properties of the growth model and to investigate the effects of cellular

diffusion we first consider the one-dimensional problem, taking the growth to be in the

x-direction.

Eliminating ρ and denoting the velocity by u in (1.1)–(1.2), we have

∂n

∂t
+

∂

∂x
(nu) =

∂

∂x

(
Dn

∂n

∂x

)
+ kn,

∂u

∂x
=

∂

∂x

(
(Dn − Dρ)

∂n

∂x

)
+ (k − κ)n+ κ.

(2.1)

For definiteness we impose

∂n

∂x
= 0, u = 0 at x = 0,

n → 0 as x → +∞,
(2.2)

so that the tissue is symmetrical about the x = 0 axis. Noteworthy features of (2.1) include

its invariance under arbitrary translations

x = s(t) + x̂, t = t̂, n = n̂, u = ṡ(t) + û (2.3)

and the availability of an exact first integral. It is convenient first to subtract off the

velocity due to differences in the rates of interdiffusion (cf. the Kirkendall effect –

Crank [4, Chap. 10] contains discussion of a number of points relevant to the modelling

here) by writing

u = (Dn − Dρ)
∂n

∂x
+U (2.4)
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and we then obtain for κ� k

n =
1

(k − κ)

∂

∂x
(U − κx),

∂U

∂t
+U

∂U

∂x
=

1

(k − κ)

(
kDn − κDρ − (Dn − Dρ)

∂U

∂x

)
∂2U

∂x2
+ (k + κ)U − kκx

(2.5)

(because 0 � n � 1, the diffusivity in the second of (2.5) is necessarily positive), while for

κ = k we have

U = kx,

∂n

∂t
+ kx

∂n

∂x
=

∂

∂x

(
(Dn(1 − n) + Dρn)

∂n

∂x

)
.

(2.6)

While we shall not pursue radially-symmetric problems further here, it is worth noting

that these first integrals generalise to this case; in N dimensions, with r = |x| and

U = ∂n/∂r = 0 on r = 0, we have (with x replaced by r in (2.4)) for κ� k that

n =
1

(k − κ)

(
1

rN−1

∂

∂r
(rN−1U) − κ

)
,

∂U

∂t
+

U

rN−1

∂

∂r
(rN−1U) = (Dn(1 − n) + Dρn)

∂n

∂r
+ (k + κ)U − kκ

N
r

and for κ = k that

U =
k

N
r,

∂n

∂t
+
k

N
r

∂n

∂r
=

1

rN−1

∂

∂r

(
rN−1(Dn(1 − n) + Dρn)

∂n

∂r

)
.

2.2 The role of cellular diffusion

We now consider the initial boundary value problem in which (2.1) is subject to (2.2) and

n = 1 for 0 < x < a, n = 0 for x > a at t = 0, (2.7)

where x = a represents the initial (sharp) tumour boundary. From (2.1) we then have

∫ ∞

0

n(x, t)dx = aekt, (2.8)

so that

U = κx+ a(k − κ)ekt + o(1) x → +∞. (2.9)

For Dn = Dρ = 0 (so that U = u), it follows from (2.5) or (2.6) that the solution is simply

u = kx, n = 1 for x < aekt

u = κx+ a(k − κ)ekt, n = 0 for x > aekt
(2.10)
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where the interface s(t) = aekt satisfies

ds

dt
= u

and is of course a characteristic projection of the relevant first order partial differential

equation. Obviously, such exponential growth is to be expected for a population of cells

with no constraints on its growth.

For non-zero diffusivities, the large-time behaviour is most readily unravelled for κ = k,

when the mitotic rates of n and ρ are equal (this case being mathematically instructive

but of limited biological interest). Writing

X = x/ekt, T =
1

2k
(1 − e−2kt)

yields from (2.6) that

∂n

∂T
=

∂

∂X

(
(Dn(1 − n) + Dρn)

∂n

∂X

)
. (2.11)

Since T remains bounded as t → ∞ it follows that

n ∼ n∞(X) as t → ∞

where n∞ depends on the initial data (thus the diffusion terms are negligible for large

t, but they act to smooth the solution for t = O(1)). For discontinuous initial data, the

nonlinear diffusion equation (2.11) leads for small T to the usual Boltzmann similarity

solution (the T 1/2 behaviour being characteristic of diffusive spreading).

n ∼ na
(
(X − a)/T

1
2

)
as T → 0 with X − a = O

(
T

1
2

)
,

with na(η) → 1 as η → −∞, na(η) → 0 as η → +∞, and in the limit Dn, Dρ → 0 this

similarity solution furnishes the asymptotic behaviour for all t, with

n∞(X) ∼ na(
√

2k(X − a));

this profile varies on the scale X= a+O(
√
D/k), where the constant D is a representative

diffusivity and for Dn = Dρ = D it is of error function form.

The large-time behaviour for 0 < κ < k is surprisingly subtle. For x/ekt < a we have

u → kx, n → 1 as t → ∞, (2.12)

as in (2.10), and we translate to the frame of the ‘interface’ via

x = aekt + z, U = akekt +W (2.13)

to give

∂W

∂t
+W

∂W

∂z
=

1

(k − κ)

(
kDn − κDρ − (Dn − Dρ)

∂W

∂z

)
∂2W

∂z2
+(k+κ)W −kκz. (2.14)

We first need to determine the large z behaviour of W from (2.14); in view of (2.9) we

write

W = κz + Φ(z, t)
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with Φ � 1, and linearise to give

∂Φ

∂t
+ κz

∂Φ

∂z
∼ Dn

∂2Φ

∂z2
+ kΦ

where for brevity we take Dn to be constant. Writing

Φ = ektΨ (ζ, τ), ζ = z/eκt, τ =
Dn

2κ
(1 − e−2κt) (2.15)

gives the heat equation

∂Ψ

∂τ
∼ ∂2Ψ

∂ζ2
,

so that

Ψ ∼ − 1

τ
1
2

F

(
ζ

τ

)
e− ζ2

4τ as ζ → +∞ (2.16)

(which implies that n is exponentially small) follows in the usual way on application of the

WKBJ technique; in (2.16), F is an arbitrary positive function which can be determined

only be solving the full problem (2.14). We note from (2.15) that the lengthscale z = O(eκt)

over which this smoothing occurs is dictated by the growth of the surrounding material,

while the location of the interface (see (2.13)) is of course determined by the growth of

the tumour itself. It follows from (2.16) that as z → +∞, t → ∞ we have

W ∼ κz − ekt
√

2κ

Dn
F

(
2κz

Dneκt

)
e−κz2/2Dne

2κt

. (2.17)

The expression (2.17) is valid for sufficiently large z; it turns out that it ceases to apply

for ζ = O(1), where

z = eκt

(√
2Dn(k − κ)t

κ
+

√
Dn

2κ(k − κ)t
ln

(√
2κt

Dn
F

(
2

√
2κ(k − κ)t

Dn

))
+

ξ√
t

)
(2.18)

(the relevant argument is akin to that sometimes used in determining the wavefront

location for Fisher’s equation), whereby (2.17) implies the matching condition

Φ(ζ, t) ∼ − 1√
t
eκte−

√
2κ(k−κ)/Dnζ as ζ → +∞. (2.19)

Writing

Φ = eκtφ(ζ, t),

we have

∂φ

∂t
+ φ

∂φ

∂ζ
= e−2κt

(
Dn − Dn − Dρ

k − κ

∂φ

∂ζ

)
∂2φ

∂ζ2
+ (k − κ)φ,

so the diffusion terms are again exponentially small for large t. In view of (2.19) we then

set

φ ∼ 1√
t
ψ(ξ) for ξ = O(1), t → ∞,
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so that

−
√
Dn(k − κ)

2κ

dψ

dξ
+ ψ

dψ

dξ
= (k − κ)ψ,

this balance being that which identifies the appropriate scaling for ξ in (2.18). Hence

ψ −
√
Dn(k − κ)

2κ
ln (−ψ) = (k − κ)ξ,

which matches with (2.19) as ξ → +∞ and satisfies

ψ ∼ (k − κ)ξ as ξ → −∞,

thus matching with (2.12) also.

Finally, in the important special case κ = 0 the expression (2.12) again provides the

outer solution; the leading order inner solution is obtained by setting

W ∼ W0(Z), Z = z − S(t), S(t) ∼ qt as t → +∞

in (2.14) (with κ = 0) whereby

−q dW0

dZ
+W0

dW0

dZ
=

(
Dn − (Dn − Dρ)

k

dW0

dZ

)
d2W0

dZ2
+ kW0 (2.20)

subject to

W0 ∼ kZ as Z → −∞
W0 → 0 as Z → +∞, (2.21)

the latter following from (2.9). The growth of the tumour alone would lead to the interface

being located exactly at aekt (see (2.13)); the additional distance qt here is thus due to

normal cells being trapped in steadily-increasing numbers behind the advancing front.

The constant q is determined (as with Fisher’s equation) as the minimum wavespeed

for which (2.20)–(2.21) has a non-positive solution; if the relevant criterion is the local

behaviour as z → +∞ (i.e. if one has ‘linear selection’/a ‘pulled front’) then

q = 2
√
kDn (2.22)

if Dn is a constant. This travelling wave forms a ‘capsule’ comprising a mixture of

malignant and normal cells which surrounds the growing tumour.

The role of cellular diffusion can thus be summarised as follows. For κ > 0 its direct

effect is negligible as t → ∞ but, because it smooths the interface (the tumour boundary)

for t = O(1), it has the indirect effect of leading to a slow transition in n from 1 to 0

over the range x− s(t) = O(
√
Dekt/

√
k) for k = κ (where D again denotes a representative

diffusivity) and x− s(t) = O(
√
Deκt/

√
kt) for 0 < κ < k, with s ∼ aekt +O(

√
Dteκt) (where

s(t) can be defined by n(s, t) = 0.5, for example; the smoothing is in effect convected

by the growth of the tissue ρ). Finally, for κ = 0 the smoothing occurs over the range

x − s(t) = O(
√
D/k) with s(t) ∼ aekt + qt, where q = O(

√
kD). These results are in sharp

contrast to those for the pure interdiffusion problem k = κ = 0 in which it follows from

(2.6) that the smoothing is purely diffusion controlled and thus proceeds over the range
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x − a = O(
√
Dt). For k > 0, the growth of the tissue ρ when κ > 0 greatly enhances

the range of smoothing, but for κ = 0 it is limited to x − s(t) = O(
√
D/k), so the

interface remains relatively sharp, the travelling wave outrunning its attempts to smear

out by diffusion. In view of (2.8), s(t) − aekt is representative of the number of ρ cells

trapped behind the advancing interface; for κ= 0 these are not able to reproduce and

their numbers grow linearly with t, while for κ> 0 increasing numbers are swept up by

the expanding front.

For the purpose of the subsequent discussion, it is worth recording the far-field beha-

viour when κ = 0. We have

W ∼ − 1

t
1
2

F

(
z

t

)
ekt−z

2/4Dnt, n ∼ 1

2kDnt
1
2

z

t
F

(
z

t

)
ekt−z

2/4Dnt as z → +∞ (2.23)

while far behind the ‘interface’ (for all t for D � 1 and for large t for D = O(1))

W ∼ kz − 1

(1 − e−2kt)
1
2

G

(
k(−z)

sinh (kt)

)
e−kz2/2Dρ(e

2kt−1),

ρ ∼ e−kt

2Dρ(1 − e−2kt)
1
2

(−z)
sinh (kt)

G

(
k(−z)

sinh (kt)

)
e−kz2/2Dρ(e

2kt−1),

(2.24)

where G depends on the evolution over all time; matching with the large-time travelling

wave requires that G(τ) ∼ −q ln τ as τ → 0+ (and the second of (2.24) does not hold in

this limit because the G′ term in ρ cannot be neglected). For large time, the decay of ρ

behind the front with z is thus very slow (having z scaling with ekt), but on this lengthscale

ρ decreases with t as e−kt due to dilution, by the growing n population, of the ρ material

that has been left behind the front.

The special case Dρ = 0, in which (2.24) evidently does not apply, is worth expanding

upon. Writing

W = kz − Λ(z, t)

then gives

∂Λ

∂t
+ kz

∂Λ

∂z
=
Dn

k

∂Λ

∂z

∂2Λ

∂z2
+ Λ

∂Λ

∂z
and, because of the degeneracy of the diffusion term, Λ = ρ ≡ 0 holds in place of (2.24)

for z � −σ(t), say, with σ ∼ σ∞e
kt as t → ∞ for some constant σ∞ ∈ (0, a); for small D

we have σ∞ = O(
√
D/k).

3 Multi-dimensional models: Darcy flow

3.1 Formulation

On the (slow) timescale of tissue growth, elastic effects can typically be neglected (the

viscoelastic relaxation time being much less than the timescale of growth, cf. Fung [14])

and the tissue treated as a (Newtonian) fluid. A Darcy constitutive relation has often

been adopted in modelling tumour growth [1], [2], [15], though apparently often more

for mathematical simplicity than on physical grounds (see Please et al. [21] and Landman

& Please [20], however, for an example of a physically based derivation; we stress that
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in contrast to such approaches we are for simplicity concerned here with tissue through

which both nutrient and extracellular fluid are readily transported, so cell division is

not restricted by a shortage of either). We address this case first, in part because of its

historical prevalence and in part for its relevance to the growth of engineered tissue in

porous scaffolds.

We thus supplement (1.1) by the constitutive law

v = − K

µ(n)
∇p (3.1)

where K is the permeability of the scaffold, µ(n) is the viscosity of the growing continuum

and p is the pressure field. We note from (1.1) that the velocities of the n and ρ phases

are given respectively by

vn = v − Dn∇(ln n), vρ = v − Dρ∇(ln ρ)

and how the constitutive law (whether Darcy or Stokes) should be formulated in terms

of the various possible velocity fields is not without controversy (e.g. see Joseph [17] and

Camacho & Brenner [4] for a discussion of related matters; we stress that such issues are

not relevant to the one-dimensional case). Here we are primarily concerned with the case

of small Dn and Dρ and shall not dwell further on such matters; in (3.1) and (4.1) we

adopt a simple-minded approach whereby diffusion (operating at the cellular level) is in

effect regarded as a process separate from the macroscopic tissue deformation described

by v. Indeed, in this section we shall focus exclusively on the sharp interface limit with

Dn = Dρ = 0 in which

n = 1, µ = µn in Ωn(t),

n = 0, µ = µρ in Ωρ(t),

and we denote the interface which separates Ωn and Ωρ by Γ (t). Thus

∇ ·
(
K

µn
∇p

)
= −k in Ωn(t),

∇ ·
(
K

µρ
∇p

)
= −κ in Ωρ(t),

(3.2)

and

[p]+− = 0, qν = −K

µn

∂p

∂ν

∣∣∣∣
−

= −K

µρ

∂p

∂ν

∣∣∣∣
+

on Γ (t),

where ‘−’ denotes the limit as Γ is approached from within Ωn and ‘+’ from within

Ωρ; ∂/∂ν is the normal derivative pointing into Ωρ and qν is the normal velocity of

the interface in the same direction. In the two-dimensional case, the moving-boundary

problem (3.2) is of the Hele–Shaw squeeze film type (cf. Entov et al. [10], Lacey [19]

and Shelley et al. [23] for example; see also Howison [16] for a discussion of two-phase

Hele–Shaw problems) but the rates of ‘squeezing’ (k and κ) in the two phases can differ

in this biological context, this being a novel feature of the current formulation; in the

case of engineered growth in a scaffold, the second (ρ) phase will typically be largely
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water, so that κ = 0. Moreover, whereas such formulations of Hele-Shaw squeeze films

are intrinsically two-dimensional, problems in three dimensions are also of interest here.

A linear stability analysis [11] shows a planar interface to be stable for µn > µρ and

unstable for µn < µρ, as with conventional Hele–Shaw problems.

3.2 Baiocchi transform

In one-phase cases (cf. Elliott & Janovsky [9], Lacey [18] and below), the Baiocchi

transform provides a useful reformulation of (3.2). Here we pursue briefly the two-phase

case in large part to clarify its limitations. We write Γ (t) as t = ω(x), so that

on t = ω(x) [p]+− = 0, −1 =
K

µn
∇ω · ∇p|− = −K

µρ
∇ω · ∇p|+, (3.3)

and introduce

w = K

∫ t

0

e−λt′p(x, y, t′)dt′, (3.4)

where λ = (kµn − κµρ)/(µn − µρ), provided µn � µρ. We assume qν > 0; then it follows

from (3.2)–(3.3) that

∇2w = −kµn

λ
(1 − e−λt) in Ωn(0),

∇2w = −
(
κµρ

λ
− kµn

λ
e−λt

)
in Ωn(t)\Ωn(0),

∇2w = −κµρ

λ

(
1 − e−λt) in Ωρ(t);

(3.5)

the choice of the value of λ given above is required in order that the right-hand side of

the second of these not be dependent on ω. We also have w and ∇w continuous at ∂Ωn(0)

and

at t = ω(x) [w]+− =

[
∂w

∂ν

]+

−
= 0, ∇ω · ∇ ∂w

∂t

∣∣∣∣
−

= −µne−λt
(

∇ω · ∇ ∂w

∂t

∣∣∣∣
+

= −µρe−λt
)
.

(3.6)

Thus enhanced smoothness of the solution is attained, with w and ∇w continuous every-

where (this is already the case for (3.2) when µn = µρ, no integral then being required;

it is worth emphasising that the moving-boundary problem (3.2) is far from trivial even

when µn = µρ, provided that κ� k), but in view of the third boundary condition in (3.6),

and unlike the corresponding one-phase problems, t does not appear only parametrically.

3.3 One-phase limits

3.3.1 µn � µρ

This limit (which also arises in § 4.2.1), whereby the tissue is much more viscous than the

surrounding medium, i.e. µρ/µn = ε, 0 < ε � 1, is often relevant in vitro (for example,

when ρ is an aqueous medium) and sometimes in vivo (such as the growth of a cancer into

the digestive fluid or along a duct in the breast). We set p = εP in Ωρ and (3.2) reduces
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at leading order to the usual Hele–Shaw squeeze film problem

∇ ·
(
K

µn
∇p

)
= −k in Ωn(t),

p|− = 0, qν = −K

µn

∂p

∂ν

∣∣∣∣
−

on Γ (t),

(3.7)

with the leading-order pressure in the ρ phase being determined by

∇ ·
(
K

µn
∇P

)
= −κ in Ωρ(t),

qν = −K

µn

∂P

∂ν

∣∣∣∣
+

on Γ (t),

where qν and Γ are given by (3.7). We have λ ∼ k and (3.5)–(3.6) reduce at leading order

to

∇2w = −µn(1 − e−kt) in Ωn(0),

∇2w = µne
−kt in Ωn(t)\Ωn(0),

at t = ω(x) w =
∂w

∂ν
= 0,

(3.8)

(the third boundary condition in (3.6) being satisfied automatically in this limit) so that

t now does appear only parametrically, with the associated (‘moment’) conservation laws

(cf. Richardson [22] and Entov et al. [10], for example) taking the form∫
Ωn(t)

F(x) dx = ekt
∫
Ωn(0)

F(x) dx, (3.9)

when ∇2F = 0 in Ωn(t); these follow at once from∫
Ωn(t)

(F∇2w − w∇2F) dx = 0.

3.3.2 µn � µρ

The converse limit to that in the previous section, addressed here and in § 4.2.2, may be

relevant to a very poorly differentiated tumour growing into healthy surrounding tissue.

We set µn/µρ = ε and p = P/ε in Ωρ to give for |x| = O(1) the leading-order problem

∇ ·
(
K

µn
∇p

)
= −k in Ωn(t),

∇ ·
(
K

µn
∇P

)
= −κ in Ωρ(t),

P |+ = 0, qν = −K

µn

∂p

∂ν

∣∣∣∣
−

= −K

µn

∂P

∂ν

∣∣∣∣
+

on Γ (t).

(3.10)

It is thus the volume production in the n phase which drives the ρ phase, but it is only the

total rate of production which is significant, i.e. we can re-express (3.10) as the one-phase
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problem

∇ ·
(
K

µn
∇P

)
= −κ in Ωρ(t),

P |+ = 0, qν = −K

µn

∂P

∂ν

∣∣∣∣
+

on Γ (t),

−
∫
Γ (t)

K

µn

∂P

∂ν
dS = kVn(0)ekt.

(3.11)

The last condition, which is obvious on physical grounds with Vn(t) being the volume of

Ωn(t), follows because

dVn

dt
=

∫
Γ

qνdS = −
∫
Γ

K

µn

∂p

∂ν
dS = −

∫
Ωn

∇ ·
(
K

µn

∂p

∂ν

)
dx = kVn

= −
∫
Γ

K

µn

∂P

∂ν
dS = −

∫
Ωρ\{r>R}

κdx −
∫
r=R

K

µn

∂P

∂r
dS,

where Ωn is contained within r < R and R can be arbitrarily large. Setting

P = kVn(0)ektP ′, t′ = Vn(0)
(
ekt − 1

)
, qν = kVn(0)ektq′

ν

maps (3.11) with κ = 0 to the usual ill-posed Hele–Shaw/Saffman–Taylor problem with

a constant prescribed flux to infinity (some of the details above assume Ωn ∪ Ωρ = �N ,

but generalisation to other geometries, such as (semi-)infinite channels, involves only very

minor modifications). Ill-posedness may be an issue for (3.2) whenever µn < µρ, with the

less viscous tissue pushing out the surrounding material; a number of regularisations may

be of biological relevance, including cellular diffusion.

The Baiocchi transform for such ill-posed cases is usually expressed in a slightly different

way from that given above. We set w = W/ε and then introduce

Ŵ (x, t) = W (x, t) −Wω(x),

where Wω = W (x, ω(x)); it is readily seen that to leading order we have Wω = 0 for

x ∈ Ωn(0), while (using λ ∼ k) the Cauchy problem

∇2Wω = −µn in Ωρ(0),

Wω =
∂Wω

∂ν
= 0 on Γ (0),

(3.12)

determines Wω elsewhere. Moreover, it is also apparent from (3.4) that, again to leading

order in ε, Ŵ = 0 for x ∈ Ωn(t) and hence (3.5)–(3.6) imply

∇2Ŵ = µne
−κt in Ωρ(t),

at t = ω Ŵ =
∂Ŵ

∂ν
= 0,

(3.13)

the third condition on (3.6) again being satisfied identically. The dependence on k enters

only through the behaviour as r → ∞, which follows from that for P indicated above.
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The one-phase problem (3.12) again depends only parametrically on t. Since

∂Ŵ

∂t
= Ke−κtP ,

if P , and hence W , have no driving singularities then the singularities of Ŵ are those of

−Wω . Moreover, from (3.12)–(3.13) the associated conservation laws take the form

∫
Ωρ(0)\Ωρ(t)

F(x)dx = − 1

µn

∫
r→∞

(
F

(
eκt

∂Ŵ

∂r
+

∂Wω

∂r

)
− ∂F

∂r
(eκtŴ +Wω)

)
dS (3.14)

for ∇2F = 0 in Ωρ(0), since the left-hand side of (3.14) is equal to∫
Ωρ(0)

F(eκt∇2Ŵ + ∇2Wω) dx.

The analysis above glosses over the fact that in this ill-posed case the solution will typically

cease to exist in finite time; there is substantial discussion of such matters in the literature

on the Hele–Shaw problem (see, for example, Cummings et al. [7] and references therein)

and we shall not comment further here. The tissue interface can thus be expected to

develop a complicated fingering morphology (familiar in the Hele-Shaw context), which

would correlate with rapid penetration into the surrounding tissue; tumour cells around

the tip of a finger might then be prone to break off from the main tumour mass, possibly

resulting in metastatic spread, attaching to (and growing at) other parts of the body.

We conclude this section by returning to the two-phase version of the Baiocchi trans-

form. Both one-phase problems have conserved integrals, but these are mutually exclusive

and thus not applicable to the two-phase case (if F is bounded and ∇2F = 0 in both

phases, then F is necessarily constant, the resulting integral corresponding to mass conser-

vation). The formulation (3.4)–(3.6) (in particular the value of λ) does, however, identify

very economically two special cases, namely µn = µρ, at which the stability properties of

the problem change dramatically, and kµn = κµρ, for which λ = 0 and

∇2w = −kµnt in Ωn(0) and Ωρ(t),

∇2w = µn − µρ − kµnt in Ωn(t)\Ωn(0),

with ∇ · (K∇p) = −kµn for all x; the significance, if any, of this second special case is

unclear, however.

4 Multi-dimensional models: Stokes flow

4.1 Formulation

We now turn to Stokes flow, which is probably the simplest appropriate formulation when

the tissue is growing freely, rather than within a porous material.

In this case we have momentum equations

∂σij
∂xj

= 0
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and constitutive law

σij = −
(
p+

2

3
µ(n)

∂vk
∂xk

)
δij + µ(n)

(
∂vi
∂xj

+
∂vj
∂xi

)
, (4.1)

where the pressure p is defined by

p = −1

3
σkk

and the summation convention is being adopted; we stress that even though the material

is taken to be incompressible, we do not have ∇ · v = 0 because of cell division. We also

note that, for these viscous dominated flows, the momentum carried by newly born cells is

not an issue; such considerations would, however, be relevant were there circumstances in

which non-negligible inertial effects could arise. In the sharp interface limit we therefore

obtain

0 = −∇p+ µn∇2v, ∇ · v = k in Ωn(t), (4.2)

0 = −∇p+ µρ∇2v, ∇ · v = κ in Ωρ(t), (4.3)

[v]+− = 0, [σijνj]
+
− = 0, qν = v · ν on Γ (t), (4.4)

where ν = (νj) is the unit normal into Ωρ. For appropriate boundary conditions, planar

interfaces are unstable for this problem, whatever the value of µn/µρ (see [11]); however,

we note that, depending upon the parameter values, perturbations typically decay relative

to the tumour size (which is itself exponentially increasing in the stages of tumour growth

described by the current model).

4.2 One-phase limits

4.2.1 µn � µρ

Writing µρ/µn = ε (as in § 3.3.1) and requiring p → 0 as r → ∞ we have p = O(ε) in Ωρ(t),

while (4.2) holds subject to (at leading order)

σijνj |− = 0, qν = v · ν|− on Γ (t), (4.5)

which are the usual stress-free and kinematic free-surface conditions. The system (4.2),

(4.5) can be regarded as a Stokes-flow analogue of the Hele–Shaw squeeze film problem

and it warrants further investigation by complex variable methods and so forth (cf.

Franks [7], for example), as does the converse one-phase problem which is described

below; in two dimensions, writing v = (u, v) and

u =
1

2
kx+

∂ψ

∂y
, v =

1

2
ky − ∂ψ

∂x
, ω =

∂v

∂x
− ∂u

∂y
,

σ11 =
∂2A

∂y2
, σ12 = − ∂2A

∂x∂y
, σ22 =

∂2A

∂x2
,

(here only, ω denotes the vorticity not the moving-boundary location) we have

∂2A

∂y2
− ∂2A

∂x2
= 4µn

∂2ψ

∂x∂y
, µn

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
= − ∂2A

∂x∂y
,
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so A and 2µnψ are, in the usual way, biharmonic conjugates and

∇2A = −2p+
2

3
kµn, ∇2p = 0,

∇2ψ = −ω, ∇2ω = 0.

Related formulations arise in fibre drawing [8, 6], but in such applications the focus is

usually on cases with k < 0; here k � 0, which would correspond to axial fibre compression

in the fibre analogy, necessarily holds. Moreover, in the fibre-drawing context the relevant

formulations are necessarily two-dimensional, whereas three-dimensional problems are

again also of interest here.

For unconstrained growth, Γ = ∂Ωn, we have (up to rigid body motions) in three

dimensions

v =
1

3
k(x, y, z), p = 0 (4.6)

(so σij = 0 for all i, j) and in two dimensions (cylindrical tissue)

v =
1

2
k(x, y, 0), p =

1

3
kµn (4.7)

(σij = 0 for all i, j except that σ33 = −kµn); in both cases the tissue simply grows in size

without changing shape.

4.2.2 µn � µρ

Setting µn/µρ = ε (as in § 3.3.2) and p = P/ε, then to leading order P is uniform, P = Pn(t)

say, in Ωn and

0 = −∇P + µn∇2v, ∇ · v = κ in Ωρ(t),

σijνj |+ = −Pn(t)νi, qν = v · ν|+ on Γ (t).

The additional constraint which in effect determines Pn again follows from the total rate

of volume production in Ωn(t), whereby

Vn(t) = Vn(0)ekt (4.8)

and ∫
Γ

v · νdS = kVn(0)ekt,

which can be used together with the divergence theorem to deduce the behaviour of v as

r → ∞. The transformation

P = kVn(0)ektP ′, v = kVn(0)ektv′, t′ = Vn(0)(ekt − 1), qν = kVn(0)ektq′
ν

maps the problem with κ = 0 to a standard one-phase Stokes free-boundary problem with

a constant flux of material to infinity.
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5 Thin-film models

5.1 Preliminaries

Thin-film approaches are particularly pertinent to the types of model formulated above

because of the propensity of the latter to exhibit fingering instabilities; these fingers

rapidly grow to become much longer than they are wide, the asymptotic descriptions

derived below thus playing an important role in their nonlinear analysis. We restrict

ourselves here to deriving the relevant thin-film formulations, these having a variety of

different applications.

We consider two-dimensional growth in a ‘channel’ 0 < x < ∞, 0 < y < H with

periodicity/symmetry conditions at y = 0, H and symmetry conditions at x = 0. We take

Dn and Dρ to be constant and adopt the non-dimensionalisation

x = Lx̂, y = Hŷ, t = t̂/k, u = Lkû, v = Hkv̂, (5.1)

where L is a representative finger length and ε = H/L � 1 (note that the quantity ε has

different meanings in different sections). Thus (1.1) becomes, on dropping ˆ ’s,

∂n

∂t
+

∂

∂x
(nu) +

∂

∂y
(nv) = dn

(
∂2n

∂y2
+ ε2

∂2n

∂x2

)
+ n,

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = dρ

(
∂2ρ

∂y2
+ ε2

∂2ρ

∂y2

)
+ αρ, (5.2)

n+ ρ = 1,

where dn = Dn/kH
2, dρ = Dρ/kH

2, α = κ/k. For either constitutive law, we have boundary

conditions

at y = 0, 1 v = 0, dn
∂n

∂y
= dρ

∂ρ

∂y
= 0,

at x = 0 u = 0, dn
∂n

∂x
= dρ

∂ρ

∂y
= 0,

as x → ∞ v → 0, n → 0.

(5.3)

The most concise way to proceed with the thin-film limit involves introducing

n̄(x, t) =

∫ 1

0

n(x, y, t) dy, ρ̄(x, t) =

∫ 1

0

ρ(x, y, t) dy (5.4)

to give

∂n̄

∂t
+

∂

∂x

(∫ 1

0

nu dy

)
= ε2dn

∂2n̄

∂x2
+ n̄,

∂ρ̄

∂t
+

∂

∂x

(∫ 1

0

ρu dy

)
= ε2dρ

∂2ρ̄

∂x2
+ αρ̄, (5.5)

n̄+ ρ̄ = 1.

One distinguished limit (that of large cellular diffusion) has dn, dρ = O(1/ε2), in which
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case (5.2) implies n ∼ n0(x, t), ρ ∼ ρ0(x, t) and (5.5) then becomes, on introducing

ū(x, t) =

∫ 1

0

u(x, y, t) dy,

equivalent to the one-dimensional model discussed in § 2; in this case, diffusion is more than

sufficient to counteract any attempt of the ‘interface’ to finger. A second distinguished limit

(corresponding to intermediate cellular diffusivities) has dn, dρ = O(1), but no systematic

reduction in dimensionality is in general then possible for Darcy flow. Here, however, we

are most concerned with the case dn, dρ � 1 which appears most biologically relevant and

leads to a sharp interface limit with

n = 1, ρ = 0 in 0 < y < h(x, t), n = 0, ρ = 1 in h(x, t) < y < 1,

say (i.e. we have in mind a finger of the n phase in the lower part of the channel, with the

ρ phase above). Thus

n̄ = h, ρ̄ = 1 − h

and (5.5) with dn = dρ = 0 becomes

∂h

∂t
+

∂

∂x

(∫ h

0

u dy

)
= h,

∂

∂t
(1 − h) +

∂

∂x

(∫ 1

h

u dy

)
= α(1 − h),

(5.6)

so that

∂ū

∂x
= h+ α(1 − h). (5.7)

5.2 Darcy flow

Scaling the pressure according to

p =
µnkL

2

K
p̂

and again dropping ˆ ’s, we have

u = − ∂p

∂x
, ε2v = − ∂p

∂y
, 0 < y < h,

u = −β ∂p

∂x
, ε2v = −β ∂p

∂y
, h < y < 1,

(5.8)

where β = µn/µρ. Hence

p ∼ p0(x, t) (5.9)
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and (5.6) yields the leading order system (note that p and v · ν , but not u, are continuous

at the interface y = h for Darcy flow)

∂h0

∂t
=

∂

∂x

(
h0

∂p0

∂x

)
+ h0,

∂

∂t
(1 − h0) = β

∂

∂x

(
(1 − h0)

∂p0

∂x

)
+ α(1 − h0).

(5.10)

In the special case µ(n) ≡ µn, further progress can also be made in the distinguished limit

dn, dρ = O(1), since (5.9) remains valid, with u0 = −∂p0/∂x, and (5.5) then implies

∂n̄0

∂t
+

∂

∂x
(n̄0u0) = n̄0,

∂ρ̄0

∂t
+

∂

∂x
(ρ̄0u0) = αρ̄0, (5.11)

n̄0 + ρ̄0 = 1,

which is equivalent to (5.10) with β = 1; it follows from (5.2) that n0(x, y, t), ρ0(x, y, t) and

v0(x, y, t) are in turn determined by

∂n0

∂t
+

∂

∂x
(n0u0) +

∂

∂y
(n0v0) = dn

∂2n0

∂y2
+ n0,

∂ρ0

∂t
+

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) = dρ

∂2ρ0

∂y2
+ αρ0, (5.12)

n0 + ρ0 = 1,

with u0 given by (5.11).

The system (5.10) is amenable to further simplification. We define

Λ = −(h0 + β(1 − h0))
∂p0

∂x

so that

(1 − α)h0 =
∂Λ

∂x
− α (5.13)

and for α� 1 we may integrate (5.10) to give

∂Λ

∂t
= −αx+

αh0 + β(1 − h0)

h0 + β(1 − h0)
Λ, (5.14)

so that Λ satisfies the first order, fully nonlinear partial differential equation

∂Λ

∂t
= −αx+

α
(

∂Λ
∂x

− α
)

+ β
(
1 − ∂Λ

∂x

)
∂Λ
∂x

− α+ β
(
1 − ∂Λ

∂x

) Λ (5.15)

(we note from (5.13) that α � ∂Λ
∂x

� 1), which can be solved in the usual way by

characteristic methods. Equation (5.15) simplifies significantly in the special case α = β
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(i.e. kµn = κµρ) noted above in the Baiocchi-transform context. For α = 1 we have Λ = x

and
∂h0

∂t
+

βx

(h0 + β(1 − h0))2
∂h0

∂x
= − (1 − β)h0(1 − h0)

h0 + β(1 − h0)
. (5.16)

Much more information can be gleaned from these evolution equations for specific initial

value problems but we shall not proceed further in that direction here.

5.3 Stokes flow

Here the conditions (5.3) are supplemented by

at y = 0, 1 σ12 = 0,

at x = 0 σ12 = 0,
(5.17)

so that

∂

∂x

∫ 1

0

σ11(x, y, t) dy = 0;

defining the pressure origin such that σ11 → 0 as x → +∞, we thus have

∫ 1

0

σ11(x, y, t) dy = 0. (5.18)

Appropriate stress scalings are

p = µnkp̂, σ11 = µnkσ̂11, σ22 = µnkσ̂22,

so in the sharp interface limit we have, dropping ˆ ’s,

0 =
∂2u0

∂y2
, 0 = −∂p0

∂y
+

∂2v0

∂y2
,

∂u0

∂x
+

∂v0
∂y

= 1, 0 < y < h0,

0 =
1

β

∂2u0

∂y2
, 0 = −∂p0

∂y
+

1

β

∂2v0

∂y2
,

∂u0

∂x
+

∂v0
∂y

= α, h0 < y < 1.

(5.19)

It follows at once, using (5.17) that

u0 = u0(x, t) (5.20)

so (5.6)–(5.7) yield the system

∂h0

∂t
+

∂

∂x
(h0u0) = h0,

∂u0

∂x
= h0 + α(1 − h0),

(5.21)

for h0 and u0, this being independent of β. This system is identical to (5.10) with β = 1

(and u0 = −∂p0/∂x) and is equivalent to (2.1) with Dn = Dρ = 0 (with h0 playing the role

of n). Thus the simplifications already noted for (5.10) and (2.1) are also effective in this

case.
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To complete the analysis, we note that

v0 = (1 − α)(1 − h0)y, 0 < y < h0, v0 = (1 − α)h0(1 − y), h0 < y < 1,

and that

p0 = P0(x, t) − 2

3
+ 2(1 − α)(1 − h0) 0 < y < h0,

p0 = P0(x, t) − 2α

3β
− 2

β
(1 − α)h0 h0 < y < 1;

(5.22)

due to the volumetric sources, p is discontinuous at the interface y = h, σ22 ∼ −P0(x, t)

being continuous to leading order. The solvability condition (5.18) is needed to determine

P0; we have to leading order that

σ11 = −P0 + 2 − 4(1 − α)(1 − h0), 0 < y < h0,

σ11 = −P0 +
2α

β
+

4

β
(1 − α)h0, h0 < y < 1,

so from (5.18) we have

P0 =
2

β
(βh0 + α(1 − h0)) +

4

β
(1 − α)(1 − β)h0(1 − h0).

Because (5.20) holds in the thin-film limit whatever the values of dn and dρ, (5.5) reduces

for any β to (5.11) and (5.12) again governs the variations with y. Thus in particular

the Stokes flow problem for any µ(n) can in the thin-film limit be approximated by the

constant viscosity (µ(n) ≡ µn) Darcy formulation.

There is a distinct, more involved, limit problem when β = O(1/ε2) (and similarly when

β = O(ε2), when the appropriate pressure scaling is p = µnkp̂/ε
2); writing β = γ/ε2 and

considering the sharp interface limit, (5.19) is modified in h0 < y < 1 to

0 = −∂p0

∂x
+

1

γ

∂2u0

∂y2
, 0 = −∂p0

∂y
,

∂u0

∂x
+

∂v0
∂y

= α, h0 < y < 1.

Thus in 0 < y < h0 we have

u0 = U0(x, t), v0 =

(
1 − ∂U0

∂x

)
y, p0 = P0(x, t) +

4

3
− 2

∂U0

∂x
(5.23)

and in h0 < y < 1

p0 = P0(x, t), u0 = U0 +
1

2
γ
(
(1 − y)2 − (1 − h0)

2
) ∂P0

∂x
. (5.24)

Since to leading order

σ11 = −P0 + 4
∂U0

∂x
− 2, 0 < y < h0, σ11 = −P0, h0 < y < 1,

(5.18) implies that

P0 = 4h0
∂U0

∂x
− 2h0 (5.25)
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and (5.23)–(5.24) give

ū0 = U0 − 1

3
γ(1 − h0)

3 ∂P0

∂x
. (5.26)

Finally, (5.6)–(5.7) yield the coupled system

∂h0

∂t
+

∂

∂x
(h0U0) = h0,

∂

∂x

(
U0 − 1

3
γ(1 − h0)

3 ∂

∂x

(
4h0

∂U0

∂x
− 2h0

))
= h0 + α(1 − h0),

(5.27)

from which an exact first integral can again be obtained. In the limit γ → ∞, i.e. in the

corresponding one-phase case (as in § 4.2.1), we have (until 1 − h0 becomes small)

P0 = 0,
∂U0

∂x
=

1

2
,

(cf. (4.7)) and the first of (5.27). This result corresponds to near radial growth of the tip

of the finger, which thus tends to block the whole of the channel.

We again restrict ourselves here to deriving the governing formulations; specific applic-

ations will be described elsewhere.

5.4 Effects of cellular diffusion

We conclude the discussion of thin-film limits by considering the distinguished limit

dn, dρ = O(1), focusing on the cases when (5.11)–(5.12) hold with u ∼ u0(x, t). Significant

progress is possible in simplifying the two-dimensional governing equations (5.12). We

write

v0 = V0 + (dn − dρ)
∂n0

∂y

to obtain for α� 1

∂n0

∂t
+

∂

∂x
(n0u0) +

∂

∂y
(n0V0) =

∂

∂y

(
(dn(1 − n0) + dρn0)

∂n0

∂y

)
+ n0,

n0 = n̄0 +
1

1 − α

∂V0

∂y
.

For α� 1 we may then integrate to give (using (5.11))

∂V0

∂t
+ u0

∂V0

∂x
+ V0

∂V0

∂y
=

(
dn − (dn − dρ)

(
n̄0 +

1

1 − α

∂V0

∂y

))
∂2V0

∂y2
+ (1 − α)(1 − 2n̄0)V0,

(5.28)

with (from (5.11))

∂u0

∂x
= (1 − α)n̄0 + α.

Introducing the Lagrangian coordinate x′, where

dx

dt
= u0(x, t), x = x′ at t = 0,



Mathematical analysis of some multi-dimensional tissue-growth models 293

we obtain from (5.11) (after integrating as in § 2.1) that

n̄0 =
N̄0(x

′)

N̄0(x′) + (1 − N̄0(x′))e−(1−α)t ,

where n̄0 = N̄0(x) at t = 0. From (5.28), V0(y, t; x
′) then satisfies

∂V0

∂t
+ V0

∂V0

∂y
=

(
dn − (dn − dρ)

(
n̄0 +

1

1 − α

∂V0

∂y

))
∂2V0

∂y2
+ (1 − α)(1 − 2n̄0)V0, (5.29)

having only parametric dependence upon x′; the behaviour in the two directions, x and y,

can thus be decoupled. We remark that the quadratically-nonlinear reaction-convection-

diffusion equation (5.29) has a family of solutions of the form

V0 = A(t; x′) + B(t; x′) cos

(√
1 − α

dn − dρ
y

)
+ C(t; x′) sin

(√
1 − α

dn − dρ
y

)
. (5.30)

The linear stability analysis of (5.30) is straightforward and instructive. In particular,

V0 ∼ C(t; x′) sin (πy) with C � 1 is exponentially growing in t for small n̄0 if α+ dnπ
2 < 1

but, provided α < 1 + dρπ2, it subsequently becomes linearly stable as n̄0 grows towards

unity; in the special case dn − dρ = (1 − α)/π2 this analysis extends into the nonlinear

regime in view of (5.30) with A,B ≡ 0.

For α = 1, we have u0 = x, V0 = 0 and, setting x′ = x/et, it follows that n0(y, t; x
′)

satisfies

∂n0

∂t
=

∂

∂y

(
(dn(1 − n0) + dρn0)

∂n0

∂y

)
.

6 Discussion

An aspect of modelling which is of particular significance in the tumour growth context

is whether the models shed light on the mechanisms underpinning tumour invasiveness.

The cells of aggressive tumours may perhaps detach readily from their neighbours and

diffuse into the surrounding tissue (Dn �Dρ) and, for related reasons (because the tumour

cells are poorly differentiated), we can anticipate that µn � µρ may apply when the

tumour is surrounded by normal tissue. While we cannot of course expect to capture

reliably the behaviour of individual cells within a continuum, deterministic framework,

our results indicate that cellular diffusion is much less effective in promoting invasion

than the (intrinsically multi-dimensional) instabilities which can result from the continuum

mechanics of tumour growth. Thus, the concentration of n (i.e. of cells which could be

responsible for metastatic spread) drops off rapidly in front of the advancing interface

(see (2.23)); as discussed at the end of § 2.2, taking the limit Dρ/Dn → 0 restricts the

extent to which the surrounding cells penetrate the growing tumour but has very little

bearing on the behaviour of tumour cells outside the interface. By contrast, fingering

instabilities, with preferential advance of the tumour along the fingers, leads (particularly

in view of the global constraint (4.8), which holds for any constitutive assumption) to

significantly enhanced penetration of the tumour into the surrounding tissue. Thus in the
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framework of the current model, which it should be stressed includes only growth-driven

and random (diffusive) cellular motion and not directional effects such as chemotaxis,

gross fingering of the tumour, rather than the diffusive motion of its component cells into

the surrounding tissue, is the dominant mechanism for invasion by the tumour as a whole

(the importance for metastatic spread of the diffusion of individual cells a significant

distance away from the tumour mass should nevertheless not be underestimated; this is

difficult to capture in a modelling framework such as this, though the far-field analysis of

§ 2.2 provides some crude measures of the likelihood of this type of infiltration). We note

in passing that fingering will typically increase the concentration gradient of n normal to

the finger and will thus enhance diffusion in that direction.

It will be clear that numerous important effects, including nutrient and waste-material

transport limitations and various mechanisms for the destruction of normal cells by a

growing tumour, have not been incorporated in the current modelling; some of these

will be addressed in subsequent publications (cf. Franks [11]). The preliminary analysis

outlined above leaves numerous open questions and, we hope, motivates the further

investigation of some interesting types of moving-boundary problem. We conclude by

noting that several aspects of the modelling are also relevant to the growth of other

colonies of cells, such as to the early stages in the growth of bacterial biofilms.
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